In vivo assessments of bioabsorbable AZ91 magnesium implants coated with nanostructured fluoridated hydroxyapatite by MAO/EPD technique for biomedical applications.
نویسندگان
چکیده
Although magnesium (Mg) is a unique biodegradable metal which possesses mechanical property similar to that of the natural bone and can be an attractive material to be used as orthopedic implants, its quick corrosion rate restricts its actual clinical applications. To control its rapid degradation, we have modified the surface of magnesium implant using fluoridated hydroxyapatite (FHA: Ca10(PO4)6OH2-xFx) through the combined micro-arc oxidation (MAO) and electrophoretic deposition (EPD) techniques, which was presented in our previous paper. In this article, the biocompatibility examinations were conducted on the coated AZ91 magnesium alloy by implanting it into the greater trochanter area of rabbits. The results of the in vivo animal test revealed a significant enhancement in the biocompatibility of FHA/MAO coated implant compared to the uncoated one. By applying the FHA/MAO coating on the AZ91 implant, the amount of weight loss and magnesium ion release in blood plasma decreased. According to the histological results, the formation of the new bone increased and the inflammation decreased around the implant. In addition, the implantation of the uncoated AZ91 alloy accompanied by the release of hydrogen gas around the implant; this release was suppressed by applying the coated implant. Our study exemplifies that the surface coating of magnesium implant using a bioactive ceramic such as fluoridated hydroxyapatite may improve the biocompatibility of the implant to make it suitable as a commercialized biomedical product.
منابع مشابه
A review on the prevalent fabrication methods, microstructural, mechanical properties, and corrosion resistance of nanostructured hydroxyapatite containing bilayer and multilayer coatings used in biomedical applications
Surface treatments of the biomaterials are of great interest in many biomedical applications. Hydroxyapatite is a favorable candidate for surface modification of the implants. To date, a wide variety of methods have been developed to produce bio-active/biocompatible coatings with desirable features in order to improve the performance of the implants. This paper strives to overview the present p...
متن کاملThe Role of Metallic Substrate of Hydroxyapatite Coated Dental Endodontic Implants in Clinical and Pathological Success
Hydroxyapatite coatings have been used on metallic substrates in a variety of applications, including modifying the surface of human implants, bone osseointegration and biological fixation. In this paper, the effects of various kinds of metallic substrate on clinical and pathological results of in vivo tests are presented. Four kinds of endodontic implants i.e, stainless steel, cobalt base all...
متن کاملThe Role of Metallic Substrate of Hydroxyapatite Coated Dental Endodontic Implants in Clinical and Pathological Success
Hydroxyapatite coatings have been used on metallic substrates in a variety of applications, including modifying the surface of human implants, bone osseointegration and biological fixation. In this paper, the effects of various kinds of metallic substrate on clinical and pathological results of in vivo tests are presented. Four kinds of endodontic implants i.e, stainless steel, cobalt base all...
متن کاملMicro-arc Oxidation (MAO) Coupling Electrophoresis Deposition (EPD) Versus Hydroxyapatite Coating in Periimplantitis: An Experimental Study in Dog
Object: This paper aims to evaluate the influence of dental implants coated with hydroxyapatite (HA) and implants processed by micro-arc oxidation (MAO) coupling electrophoresis deposition (EPD) on experimental peri-implantitis in Beagle dogs. Methods: The thirty-six implants (diameter 3.3 mm & length 11 mm) were equally divided into three groups. Group A was processed with a plasma-sprayed lay...
متن کاملBone Tissue Response to Plasma Sprayed Hydroxyapatite Coatings: An In Vivo Study on Rabbit Femoral Condyles
In this study, hydroxyapatite was coated on titanium substrates by plasma spraying process. A well-known porous and lamellar microstructure was found in the lateral a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Materials science & engineering. C, Materials for biological applications
دوره 48 شماره
صفحات -
تاریخ انتشار 2015